Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing.

نویسندگان

  • L Ling
  • D D Fuller
  • K B Bach
  • R Kinkead
  • E B Olson
  • G S Mitchell
چکیده

We tested the hypothesis that chronic intermittent hypoxia (CIH) elicits plasticity in the central neural control of breathing via serotonin-dependent effects on the integration of carotid chemoafferent inputs. Adult rats were exposed to 1 week of nocturnal CIH (11-12% O(2)/air at 5 min intervals; 12 hr/night). CIH and untreated rats were then anesthetized, paralyzed, vagotomized, and artificially ventilated. Time-dependent hypoxic responses were assessed in the phrenic neurogram during and after three 5 min episodes of isocapnic hypoxia. Integrated phrenic amplitude (integralPhr) responses during hypoxia were greater after CIH at arterial oxygen pressures (PaO(2)) between 25 and 45 mmHg (p < 0.05), but not at higher PaO(2) levels. CIH did not affect hypoxic phrenic burst frequency responses, although the post-hypoxia frequency decline that is typical in rats was abolished. integralPhr and frequency responses to electrical stimulation of the carotid sinus nerve were enhanced by CIH (p < 0.05). Serotonin-dependent long-term facilitation (LTF) of integralPhr was enhanced after CIH at 15, 30, and 60 min after episodic hypoxia (p < 0.05). Pretreatment with the serotonin receptor antagonists methysergide (4 mg/kg, i.v.) and ketanserin (2 mg/kg, i.v.) reversed CIH-induced augmentation of the short-term hypoxic phrenic response and restored the post-hypoxia frequency decline in CIH rats. Whereas methysergide abolished CIH-enhanced phrenic LTF, the selective 5-HT(2) antagonist ketanserin only partially reversed this effect. The results suggest that CIH elicits unique forms of serotonin-dependent plasticity in the central neural control of breathing. Enhanced LTF after CIH may involve an upregulation of a non-5-HT(2) serotonin receptor subtype or subtypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism.

Inflammation is characteristic of most clinical disorders that challenge the neural control of breathing. Since inflammation modulates neuroplasticity, we studied the impact of inflammation caused by prolonged intermittent hypoxia on an important form of respiratory plasticity, acute intermittent hypoxia (three, 5 min hypoxic episodes, 5 min normoxic intervals) induced phrenic long-term facilit...

متن کامل

Physiological and Genomic Consequences of Intermittent Hypoxia Invited Review: Intermittent hypoxia and respiratory plasticity

Mitchell, Gordon S., Tracy L. Baker, Steven A. Nanda, David D. Fuller, Andrea G. Zabka, Brad A. Hodgeman, Ryan W. Bavis, Kenneth J. Mack, and E. B. Olson, Jr. Invited Review: Intermittent hypoxia and respiratory plasticity. J Appl Physiol 90: 2466–2475, 2001.— Intermittent hypoxia elicits long-term facilitation (LTF), a persistent augmentation (hours) of respiratory motor output. Considerable r...

متن کامل

Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation.

UNLABELLED Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal motor plasticity. Competing mechanisms give rise to phrenic motor facilitation (pMF; a general term including pLTF) depending on the severity of hypoxia within episodes. In contrast, moderate acute sustained hypoxia (mASH) does not elicit pMF. By varying the severity of ASH and targeting ...

متن کامل

Early postnatal chronic intermittent hypoxia modifies hypoxic respiratory responses and long-term phrenic facilitation in adult rats.

Acute isocapnic intermittent hypoxia elicits time-dependent, serotonin-dependent enhancement of phrenic motor output in anesthetized rats (phrenic long-term facilitation, pLTF). In adult rats, pLTF is enhanced by chronic intermittent hypoxia (CIH). To test the hypothesis that early postnatal CIH induces persistent modifications of ventilation and pLTF, we exposed male Sprague-Dawley rat pups on...

متن کامل

Invited review: Neural network plasticity in respiratory control.

Respiratory network plasticity is a modification in respiratory control that persists longer than the stimuli that evoke it or that changes the behavior produced by the network. Different durations and patterns of hypoxia can induce different types of respiratory memories. Lateral pontine neurons are required for decreases in respiratory frequency that follow brief hypoxia. Changes in synchrony...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 14  شماره 

صفحات  -

تاریخ انتشار 2001